A comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems
نویسندگان
چکیده
Differential Evolution (DE) is a population-based stochastic global optimization technique that requires the adjustment of a very few parameters in order to produce results. However, the control parameters involved in DE are highly dependent on the optimization problem; in practice, their fine-tuning is not always an easy task. The self-adaptive differential evolution (SADE) variants are those that do not require the pre-specified choice of control parameters. On the contrary, control parameters are selfadapted by using the previous learning experience. In this paper, we discuss and evaluate popular common and self-adaptive differential evolution (DE) algorithms. In particular, we present an empirical comparison between two self-adaptive DE variants and common DE methods. In order to assure a fair comparison, we test the methods by using a number of well-known unimodal and multimodal, separable and non-separable, benchmark optimization problems for different dimensions and population size. The results show that SADE variants outperform, or at least produce similar results, to common differential evolution algorithms in terms of solution accuracy and convergence speed. The advantage of using the self-adaptive methods is that the user does not need to adjust control parameters. Therefore, the total computational effort is significantly reduced.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملDeveloping Self-adaptive Melody Search Algorithm for Optimal Operation of Multi-reservoir Systems
Operation of multi-reservoir systems is known as complicated and often large-scale optimization problems. The problems, because of broad search space, nonlinear relationships, correlation of several variables, as well as problem uncertainty, are difficult requiring powerful algorithms with specific capabilities to be solved. In the present study a Self-adaptive version of Melody Search algorith...
متن کاملAn improved self-adaptive harmony search algorithm for joint replenishment problems
To solve joint replenishment problems (JRPs) effectively and efficiently which are typical NP-hard problems, an improved self-adaptive harmony search algorithm (ISHS) is designed. The proposed algorithm applies differential evolution mutation strategies to HS. Experimental results show that ISHS outperforms other start-of-art algorithms on both tested benchmark functions and typical JRPs.
متن کاملUsing the Ring Neighborhood Topology with Self-adaptive Differential Evolution
Differential Evolution (DE) is generally considered as a reliable, accurate, robust and fast optimization technique. DE has been successfully applied to solve a wide range of numerical optimization problems. However, the user is required to set the values of the control parameters of DE for each problem. Such parameter tuning is a time consuming task. Self-adaptive DE (SDE) is a new version of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011